Nonhomogeneous boundary value problem for (I, J) similar solutions of incompressible two-dimensional Euler equations
نویسندگان
چکیده
In this paper we introduce the (I, J) similar method for incompressible two-dimensional Euler equations, and obtain a series of explicit (I, J) similar solutions to the incompressible two-dimensional Euler equations. These solutions include all of the twin wave solutions, some new singularity solutions, and some global smooth solutions with a finite energy. We also reveal that the twin wave solution and an affine solution to the two-dimensional incompressible Euler equations are, respectively, a plane wave and constant vector. We prove that the initial boundary value problem of the incompressible two-dimensional Euler equations admits a unique solution and discuss the stability of the solution. Finally, we supply some explicit piecewise smooth solutions to the incompressible three-dimensional Euler case and an example of the incompressible three-dimensional Navier-Stokes equations which indicates that the viscosity limit of a solution to the Navier-Stokes equations does not need to be a solution to the Euler equations. MSC: 35Q30; 76D05; 76D10
منابع مشابه
The Navier-stokes Equations with the Kinematic and Vorticity Boundary Conditions on Non-flat Boundaries
Abstract. We study the initial-boundary value problem of the Navier-Stokes equations for incompressible fluids in a general domain in R with compact and smooth boundary, subject to the kinematic and vorticity boundary conditions on the non-flat boundary. We observe that, under the nonhomogeneous boundary conditions, the pressure p can be still recovered by solving the Neumann problem for the Po...
متن کاملExistence of triple positive solutions for boundary value problem of nonlinear fractional differential equations
This article is devoted to the study of existence and multiplicity of positive solutions to a class of nonlinear fractional order multi-point boundary value problems of the type−Dq0+u(t) = f(t, u(t)), 1 < q ≤ 2, 0 < t < 1,u(0) = 0, u(1) =m−2∑ i=1δiu(ηi),where Dq0+ represents standard Riemann-Liouville fractional derivative, δi, ηi ∈ (0, 1) withm−2∑i=1δiηi q−1 < 1, and f : [0, 1] × [0, ∞) → [0, ...
متن کاملTriple positive solutions of $m$-point boundary value problem on time scales with $p$-Laplacian
In this paper, we consider the multipoint boundary value problem for one-dimensional $p$-Laplacian dynamic equation on time scales. We prove the existence at least three positive solutions of the boundary value problem by using the Avery and Peterson fixed point theorem. The interesting point is that the non-linear term $f$ involves a first-order derivative explicitly. Our results ...
متن کاملA Study of the Navier-stokes Equations with the Kinematic and Navier Boundary Conditions
Abstract. We study the initial-boundary value problem of the Navier-Stokes equations for incompressible fluids in a domain in R with compact and smooth boundary, subject to the kinematic and Navier boundary conditions. We first reformulate the Navier boundary condition in terms of the vorticity, which is motivated by the Hodge theory on manifolds with boundary from the viewpoint of differential...
متن کاملInstantaneous Boundary Tangency and Cusp Formation in Two-Dimensional Fluid Flow
We show that, for solutions of a model of two-dimensional, viscous, compressible fluid flow, curves which are initially transverse to the spatial boundary and across which the fluid density is discontinuous become tangent to the boundary instantaneously in time. We also show by similar techniques that, for the Euler equations of two-dimensional, inviscid, incompressible flow and for a large cla...
متن کامل